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1 INTRODUCTION

The Supercomputer Workstation Communication (SWC) project has explored new

techniques for using high-capacity networks to communicate between personal

workstations and remote supercomputers. As part of this effort, the SWC project

evaluated and tested the use of standard IP/TCP-based protocols, as well as newer

remote window protocols such as the X Window System and Sun Microsystems' NeWS.

The DARPA Wideband Satellite Network provided the high-capacity, long-distance

communication path for many of these tests. User requirements of the scientific

community that will be using these systems were also investigated.

This is the final report for the project, covering the questions we studied, the tests we

performed, and the results of our evaluations.

2 PROBLEM BEING SOLVED

The project addressed the need for effective, high-bandwidth communication between

powerful remote computers and their users. The need for continued research in this

area is demonstrated by the rapid growth of the Defense Data Network (DDN) (and

more recently of NSFNET), and especially by the advance of technology that allows

higher speed long-haul networks.

Two major initiatives, now under way, are helping to provide significantly increased

computing resources to research scientists. The first, a component of the DARPA

Strategic Computing Initiative, is working to develop scalable parallel architectures in

order to provide a cost-effective form of very high-performance computing. The second,

the NSF Supercomputer Initiative, has create-'  aumber of supercomputer sites that

are connected by a high-capacity backbone net xC. Each site has its own regional

network, which provides access to universities and other research establishments.

With the creation of supercomputer centers and high-capacity networks providing

access to them, there will soon be a large number of scientists remotely accessing

computer resources in order to do research. For this to be effective, it will be necessary

for them to coordinate the use of remote systems with that of local resources such as
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mainframe computers, workstations, smaller personal computers, and laboratory

equipment. Many technical issues must be resolved for this to work effectively.

The SWC project has attempted to answer questions such as the following:

1. How well do the traditional remote access protocols work on a
supercomputer and over a network such as the Wideband Network?

2. Are these protocols adequate, or should additional new protocols be
developed?

3. How does one effectively split computer processing between a remote
supercomputer and a local workstation? What parts of an application
should be run remotely and what parts must be run locally?

4. What is the best way to edit remote files and to interactively debug
programs that are running remotely?

5. Is it possible to provide a generally usable means of connecting the output of
a program running on one remote machine to the input of a program
running on another machine? Are existing transport protocols adequate to
handle this?

6. What will the user requirements of the scientific community be? What tools
and protocols must exist in order for the supercomputer/workstation
environment to be useful?

3 GOALS AND APPROACH

The main objective of the Supercomputer Workstation Communication project was to

develop new techniques to allow personal workstations to communicate with remote

supercomputers (such as a Cray 2) over high-capacity networks. It is common for

supercomputer centers to provide high-bandwidth access for local users over Ethernets,

Hyperchannels, or other high-speed networks, but remote users are often constrained by

low-data-rate links. The DARPA Wideband Satellite Network, with its 3 Mb/s channel

speed, provided the combination of high capacity and long distance we needed for our

tests of remote access.

Our research was divided into four areas. The first area of research was the

evaluation and testing of existing remote access protocols. We verified that the file
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transfer protocol (FTP) and remote login protocol (Telnet) work over the Internet to

the five NSF-sponsored supercomputer sites. We also tested the performance of

transport protocols over the Wideband Network: the well-established TCP protocol, as

part of FTP, and an experimental protocol from MIT called NETBLT.'

In our second area of study, we explored the possibility of an Intelligent

Communication Facility that would allow users to connect the output of a program

running on one machine to the input of a program running on a different machine. It

should be possible to "patch together" various programs on different machines, some of

which may be supercomputers and some less powerful, without having to modify the

programs.

The third area involved research into supercomputer and workstation interaction. We

wanted to learn how to share processing between a remote supercomputer and a

workstation, how the user should interact with the systems, and how to best use the

new remote window protocols. The remote window protocols we studied were MIT's X

Window System 2 (X for short) and Sun Microsystems' Network extensible Window

System (NeWS). 3

As part of this effort, we developed a prototype user environment under X and wrote

various application programs. One such program was an interactive Mandlebrot Set

viewing program. A second application was a unique type of split editor for editing

remote files from a personal workstation. This split editor runs within GNU Emacs 4

and includes remote directory viewing, FTP, and remote login capability.

In our last area of investigation, we attempted to predict the future user requirements

of the scientific community that will be using workstations to access supercomputers.

This effort included a survey of how scientists currently use supercomputers, a study of

user interface issues, and a prediction of additional protocols and tools that will be

needed for the supercomputer/workstation environment to work effectively.

One of the scientists' requirements is a means to communicate mathematical equations
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with one another, but this is hindered by the lack of any standard for representing

equations on a computer. We have worked with other groups, including those working

on NSF's EXPRES project, 5 , 6 to study this area and to establish requirements for such

a standard.

4 SCIENTIFIC PROGRESS

The progress made in the Supercomputer Workstation Communication project was in

four general areas. Each of these areas will be covered separately.

4.1 Testing and Evaluation of Traditional and New Transport Protocols

Our hypothesis is that effective remote access to the supercomputers will require more

sophisticated protocols than the standard file transfer and remote login protocols.

However, testing of these protocols established a useful performance baseline. The tests

verified the accessibility of the supercomputers over the Internet and the functionality

of the protocol implementations on those machines.

4.1.1 Telnet and FTP on the NSF superconputers

We surveyed the Internet accessibility of the five NSF-established supercomputer

centers. Connections were made from a Sun 3 workstation at ISI directly to the

supercomputer at each site (where possible) or to a front-end VAX (for the batch-

oriented machines). Since none of the ,urcrcomputers are connected to the Wideband

Satellite Network, we performed these tests over the ARPANET, which was extremely

congested at times during the period of our tests (early 1987).

We tested five supercomputers: the Cray XMP running CTSS at the San Dige,

Supercomputer Center; the Cray XMP running CTSS at the National Center for

Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign;

the IBM 3090 running VM at Cornell University; the Cray XMP running COS at the

Pittsburgh Supercomputer Center; and the Cyber 205 running VSOS at the John Von

Neumann Center (JVNC) in Princeton. The Cyber 205 was to be replaced by the long-

awaited ETA-10, but this was not in place when we did our testing.
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Telnet worked to all five sites with only the usual network delay common to the

ARPANET at that time. We were able to directly log in to the two CTSS Crays. In

order to use Cornell's IBM 3090, it was necessary for us to run a program locally in

order to emulate an IBM 3270 intelligent terminal on the Sun. This was the only type

of terminal that would work with the 3090.

The last two systems mentioned above are batch-oriented machines and were accessed

by logging in to a front-end VAX running the VMS operating system. Jobs were

submitted to the supercomputers via a batch queue on the front-end machine. We were

able to Telnet to these front-end machines as well.

We were able to FTP files to and from the Cornell, NCSA, and JVNC computers.

FTP was not available at San Diego at the time of the tests but was being developed.

The Pittsburgh computer had user FTP only, which meant that it was necessary to log

in to their system and run FTP in order to transfer files from/to it. This constraint

would make it impossible to run a background FTP job from a workstation. 7 Again,

this situation may have changed since the time of our test.

It should be mentioned here that UNIX will probably become the operating system for

most supercomputers in the future. The JVNC has received its ETA-10 system, which

runs UNIX. Also, the Cray sites have plans to change to Unicos, which is UNIX for the

Cray.

4.1.2 FTP performance over the Wideband Network

In anticipation of the connection of supercomputers to the Wideband Network, we

tested the performance of FTP for file transfers between smaller computers that are

already part of the Wideband Network. The performance was limited not by processing

power, but by the use of TCP as the transport protocol underneath FTP.

The raw bandwidth of the Wideband Network is relatively high (3 Mb/s), but so is its

round-trip delay (almost 2 seconds for datagram traffic). These factors result in a large

bandwidth x delay product; that is, many bits are "in flight" at once. To keep a

I Mb/s stream flowing would require the transmitter to send 250 kilobytes of data
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before waiting for an acknowledgment. For TCP, this number corresponds to the

"window size" which, in a typical implementation, is only 2 kilobytes. If the

transmitter can send only 2 kilobytes and must then wait 2 seconds for the

acknowledgment to be returned from the receiver, the resulting throughput is only 16

Kb/s. Experimental results demonstrated this limitation clearly.

The TCP window size of 2 kilobytes was chosen to avoid overflowing the buffer

capacity of gateways when trying to send data through the lower-bandwidth

ARPANET. The protocol field carrying the window size is 16 bits, so a window size up

to 65,535 bytes could be used without modifying the TCP protocol. Our tests were

performed between a Sun workstation at ISI and a VAX at BBN. We were able to

adjust the TCP window size in the Sun by patching kernel variables, and we were able

to adjust the window size per connection in the BBN VAX TCP implementation

through a special command added to the FTP user program.

We found that throughput increased linearly as we increased the window size. At 15

kilobytes, the transfer rate was approximately 60 Kb/s. We were unable to increase the

window size to 16 kilobytes or above because of a limitation in the arithmetic of the

TCP implementation on the Sun at that time (SunOS 2.0).

To test the capacity of the Wideband Network without acknowledgment delays or

window-size limits, we began a separate set of tests using the ICMP Echo

Request/Reply protocol as implemented by the "ping" program on a Sun workstation.

The ping program transmits a sequence of echo request packets and keeps statistics on

the replies that are returned. We were able to transmit 500 Kb/s from ISI to BBN and

back to ISI, for a combined 1 Mb/s on the Wideband Network. The packets were 1400

bytes long and were transmitted every 22 milliseconds. In a typical test, the average

round-trip time was 1.9 seconds, with a maximum of 2.6 seconds. There was a 0.6

percent packet loss rate on the Wideband Network, and another 0.1 percent of the

packets incurred uncorrected bit errors. These tests established the ability of the

Wideband Network to carry 1 Mb/s without excessive packet loss and while

maintaining expected delay times. Therefore, it seems reasonable to conclude that an
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FTP implementation that allowed the full 65,535-byte TCP window size would be able

to achieve the calculated 250 Kb/s transfer rate.

Recently, extensions to the TCP protocol have been proposed to provide efficient

operation over a path with a high bandwidth x delay product.8 The window-size limit

would be circumvented by negotiating an implicit scale factor to multiply times the

window-size value carried in the header field. To reduce the effects of packet loss,

another proposed extension would allow selective acknowledgment, so that the receiver

could inform the sender about all segments that have arrived successfully; then only the

segments actually lost would have to be retransmitted.

The indiscriminate use of large window sizes could cause severe congestion on paths

with insufficient capacity. To operate efficiently over a wide range of network

performance characteristics, it is necessary for the TCP window size to be adjusted

dynamically. A study by Van Jacobson has shown a collection of techniques, including

window size adjustment, to avoid congestion. 9

4.1.3 Tests of NETBLT over the Wideband Network

The NETBLT protocol' developed at MIT is a promising alternative that avoids the

window-size limitations of TCP. NETBLT is intended for bulk data transfer

operations. In cooperation with MIT, we ran several series of tests of NETBLT

transfers over the Wideband Network.

In the first series, IBM-PC/ATs were used at ISI and MIT. These machines were

located on Ethernet LANs connected by Butterfly gateways to the Wideband Network.

The NETBLT traffic was monitored on the Ethernet with the SpyTool program, which

was developed at ISI for use in the Xerox Development Environment on a Dandelion

Workstation. 10 Throughput was limited by packet loss at the receiving IBM-PC/AT.

Bunching of the packets as they flowed through the network caused shorter interpacket

intervals than the network interface on the IBM-PC/AT could tolerate.

To avoid the packet loss problem, the NETBLT implementation was ported at ISI to

a Sun workstation. The Sun provides increased processing speed and a faster network
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interface. After a number of tests in which network timing was analyzed and NETBLT

parameters were refined, we were able to achieve transfer rates near the calculated total

throughput available to user traffic on the Wideband Network. The overall rate (which

includes initial and final handshaking) for a transfer of 716,000 bytes was 521 Kb/s.

However, the steady-state transfer rate (once the connection was established) was 942

Kb/s. This compares favorably with the theoretical maximum rate of 1.05 Mb/s

calculated from the chosen NETBLT rate-control parameters. A small amount of

packet loss at the destination Sun seemed to be the reason for the difference. (These

results are reported by Mark Lambert in his report on tests of NETBLT at MIT. 1 )

Additional tests were run betweens two Suns, one at BBN and one at ISI, with similar

results.

NETBLT performance on the Wideband Network might be improved by operating it

over the stream-oriented ST protocol 12 ' 13 rather than the datagram IP protocol. We

have participated in the development and testing of ST for transmission of packet voice

and video in the Multimedia Conferencing project. The bandwidth-reservation feature

of ST allows for a smooth flow of data at a constant rate across the Wideband

Network. This feature would mesh well with the requirements of NETBLT for rate-

based flow control. Future work in this area might include the development of an FTP

application program using the NETBLT protocol on top of ST.

4.2 Intelligent Communication Facility Study

We did a preliminary study of a system called an Intelligent Communication Facility,

which would allow users to connect the output of a program running on one machine to

the input of a program running )n a different machine. It would be very valuable if

programs on different machines, some of which may be supercomputers and some less

powerful, could be linked in this way without the need for modifying the programs.

One way to accomplish this might be to extend the idea of UNIX pipes to contain

typed data. One could think of these typed pipea as carrying a stream of one type of

data from a process on one machine to another process on a different machine. Since
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the connection would be like a UNIX pipe, there would be no direct indication of how

much data would be coming down it. Therefore, in order to make this type of

connection work with remote machines, a remote execution protocol similar to UNIX's

rsh must also exist. (We have found that such a protocol is necessary for many other

applications and will discuss this further in Section 4.3.2 of this report).

In order to comply with international standards, we suggest that the data in these

pipes conform to the CCITT X.409 data representation standard. 14  (See also "A

Survey of Data Representation Standards."' 5 ) The X.409 standard originally did not

include a representation for floating-point numbers, essential for scientific applications,

but it has since been modified to include them. The pipes themselves could be

implemented on top of TCP.

In a typical application, there may be a program that does a large amount of

computation (say, running on a supercomputer) whose output consists of many pages of

numbers. Another program on a second machine might accept numerical input and

produce graphical data, which the user would like to display on yet a third machine, a

workstation. These programs may have been written by different people. The sources

to them may be unavailable. Therefore, it is desirable to have a way for these programs

to communicate with one another tinder the direction of a user at one of the machines,

without the programs themselves having to be modified in any way.

We suggest that a library of adapters should be created. Each adapter would be a

small program that would read in data in a given format and then output an X.409

stream. Suppose, for example, that the first program's output consisted of a table with

each line consisting of six floating-point numbers (say, in FORTRAN format 6F10.6).

The adapter would read in such a line, ignore any header or title information, and

output a list of X.409 floating-point numbers. On the receiving side, the second

program would have an inverse adapter that would read in the X.409 list of floating-

point numbers and output the equivalent data in FORTRAN format. These types of

connections would continue to the third machine, the workstation (see Figure 1).
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Machine (FLOAT) =M nMMachine
A

A (X.409) 
B

Adapter Adapter

Adapter

(X.409) INTEGERI Workstation
Adapter

Figure 1: Interconnection of typed pipes across machines

The connections to the adapters, as well as the network typed-pipe connections, could

be specified by the user logged in to any of the three machines. This could be as simple

as the way it is done in UNIX (typing the names of the programs to be executed, with

special characters to denote connections to pipes), or it could be much more

sophisticated. One possibility is a graphical interface on the workstation that would

allow a user to browse a database of programs and adapters and to specify the

interconnections. Something like this was studied by Brown. 16

If a program were written to allow the input of multiple data sets, the above system

could allow for multiple pipes of input from different processe- to be connected to it.

Also, this type of system could work well with the remote window protocols described in

the next section, allowing the older non-interactive programs to be used with a front-

end that knew about the MIT X Window protocol or Sun's NeWS. The output of one

such program could be in a format like PostScript on top of the X.409 connection. The

user could then connect this pipe either to a display process on a workstation or directly

to a PostScript printer.
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We feel the constraint that the programs need not be modified is important. A

general-purpose adapter capable enough to figure out the format of any type of output

data is probably beyond current capabilities. However in most cases, a user would

know what type of data a program generates and could select a standard adapter or

write his own. More work in this area is required.

4.3 Supercomputer/Workstation Interaction and Remote Window Protocols

The bulk of our project's research effort has been in the area of

supercomputer/workstation interaction. This involves understanding how to split

processing between the remote supercomputer and the local workstation. It is desirable

for a user to be able to do this without having to devise a new communications protocol

between local and remote processes for each new application.

The new remote window protocols such as the MIT X Window System allow programs

running on a remote computer to display windows and to interact with the user on a

local workstation in a machine-independent way. This is one natural way to split the

processing between the workstation and a supercomputer. We would like to understand

when it is useful to do this and when it may be better to have more of the computation

occur on the workstation.

4.3.1 The spectrum of supercomputer/workstation interaction

In order to gain a clearer idea of this concept, it is important to keep in mind what a

user needs in order to run remote programs. First, there is a need for some method of

editing the programs and creating the data that will run remotely. Next, there must be

some way of remotely executing these programs. The user will probably need some type

of interactive debugger; in addition, since supercomputers generally use a pipelined

architecture, an interactive method of measuring performance and of vectorizing code

may be necessary. Finally, there must be some method of displaying the results of the

computation. The user also might need to interactively modify the course of the remote

computation based on a current display of its progress (for example, in a large

simulation).
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It is useful to consider a spectrum of supercomputer/workstation interaction (see

Figure 2). At one end of the spectrum (leftmost on the diagram), as much processing as

possible is done on the remote supercomputer, and a minimal amount is done locally.

At the other end (at the right), the supercomputer generates only data, and all display

and interaction with the user is done by the workstation. Between these two extremes,

interaction with the user is shared between the workstation and the remote

supercomputer. Below the spectrum line in the figure, some typical types of

applications are located in their appropriate places in the spectrum.

All All
Remote Local

Telnet direct to Usual type of Interactive X-Windows or
Supercomputer Split Editor Debugger NeWS run locally

X-Windows One type of New Split RJE Batch
run remotely use of NeWS Editor jobs

Figure 2: The spectrum of supercomputer/workstation interaction

We should first define the two ends of this spectrum more clearly. In order to do this,

let us distinguish between the interactive part of an application (displaying graphical

data in a window, interacting with the user via mouse and keyboard, etc.) and the non-

interactive part. The non-interactive pieces can be run in a batch mode; that is, they

(possibly) read in an input data set, do some (possibly a very large amounL of)

computation, and create an output data set. The user does not need to interact with

this part of the program in order for it to complete its computation.

In order to take advantage of the high processing speed of the supercomputer, the user

will want to run at least the non-interactive portion of an application remotely. Also,

supercomputer-specific parts (such as computations that take advantage of the pipelined
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architecture and the execution part of a vectorizer and debugger) must be run on the

supercomputer. This defines the all-local edge of the spectrum. (If we were to go any

further, we would not use the supercomputer at all!)

Direct interaction with the user (paying attention to mouse clicks and characters

typed) must be done on the workstation. For example, most if not all of an interactive

editor should probably run on the workstation, not the supercomputer. In addition,

any display of graphical information must be done locally. This defines the all-remote

edge of the spectrum. Telneting directly to the supercomputer would use the

workstation only to interact with the keyboard and to display text. Since this mode of

operation would not allow the display of graphical information and would not take

advantage of the workstation's capabilities, we will not consider it further.

A more useful approach, near the all-remote edge of the spectrum, is to use a remote

window system such as the MIT X Window System 2 or Sun's NeWS. 3 In this type of

system, the workstation acts as a server to process keyboard and mouse activity and to

display bitmap data, but all other computation occurs in the remote computer. Because

the specification of a display in the NeWS environment is a PostScript program, one

possible use of this system would be to download some of the display processing to the

workstation as PostScript (this is the "One type of use of NeWS" in the middle of

Figure 2).

The usual types of split editors, which allow the editing of remote files on a local

computer, are also shown in Figure 2. As an experiment, we have developed a split

editor (described in Section 4.3.4) that is located more toward the local end of the

spectrum.

Generally, if one chooses to work in the middle of the interaction spectrum, it will be

necessary to define a communications protocol to specify how the remote and local

processes will interact. A future area of research would be to determine how to allow

users to do this without having to completely design such a protocol. NeWS provides

some of this capability (via PostScript).
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At the'all-local edge of the spectrum, a user may edit a program entirely at the

workstation, submit it as a remote batch job to the supercomputer, transfer the output

data back to the workstation, and do all display and interaction with the data at the

workstation. For many applications, this is a useful mode of operation. Another

project at ISI has developed an interface to FTP that works in the background to

support this mode of operation. 7

This batch-oriented style requires a generally available, IP-based Remote Job Entry

(RJE) protocol. Although a general RJE protocol does not yet exist within the Internet,

there are systems that work within certain segments of the Internet community. For

example, an RJE system is availible on BITNET, but one must be a BITNET host to

use it. The National Center for Atmospheric Research (NCAR) has developed a very

nice Internet RJE system based on FTP 17 for providing remote access to their

supercomputers.

4.3.2 Remote window protocols, the X Window System, and NeWS

Originally, we proposed to develop both a Bitmap-Telnet protocol and a remote

window protocol as part of this project. However, by the time the project was started,

two such protocols had been developed and are now becoming standards (MIT's X

Window system and Sun's NeWS). We therefore felt it was inappropriate to create yet

another protocol, and we concentrated instead on how to best use X or NeWS with

supercomputers.

Both X and NeWS use a client-server model of window interaction. The user's

workstation is viewed as a resource (a bitmap display, mouse, and keyboard) that is

allocated by a server program running on the workstation. The server processes

requests from client application programs, which may be running either on the

workstation or remotely on another machine.

The major technical difference between the two protocols is that the display in a

window in X is a raw bitmap and the display in a NeWS window is in PostScript

format (a printer description language). Thus, a NeWS display is both hardware and
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resolution independent. An X display is hardware independent, but resolution

dependent.

X currently seems to be in far wider use than NeWS, probably because it is available

essentially free from MIT, while NeWS is a commercial product. However, Sun's

merged X/NeWS window package is planned to be a standard part of UNIX, so NeWS

may catch on more in the future.

X will be offered as a part of the Unicos Cray operating system and also should be a

part of the next release of IBM's VM, the operating system of Cornell's supercomputer.

Thus, we expect that many supercomputer users will use at least X, if not both X and

NeWS.

Most current and proposed applications that use X or NeWS use these systems

because they are rapidly becoming a window protocol standard, not because of their

remote capability. Additional protocols are needed for these systems to be used

remotely.

Primarily, a remote execution protocol is necessary. If a user on a workstation wants

to access a remote supercomputer with X, something must create a process on the

remote system; only then can X display this process on the workstation and allow the

user to interact with it. The rsh facility in UNIX works as a remote execution protocol,

but it has problems with security and authentication. Also, both the workstation and

the remote computer must be running UNIX. There is a real need for a general remote

execution protocol that will accept a user's password and start up a program (similar to

the way FTP works).

Remote applications must be designed carefully in order to minimize their required

network bandwidth. It is quite possible in either of these systems to create a large

number of packets in a simple application.
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4.3.3 Experimentation and testing with X

Some experimentation and testing was done with the X Window System. All work

was done with Version 10, Release 4, on a Sun 3 workstation. The standard version of

the X protocol, Version 11, has since been released by MIT.

We began with a small demonstration program, running on a VAX over our 10 Mb/s

Ethernet, which continually drew moving balls in a Sun window. Using the ISI SpyTool

described in Section 4.1.3, we found that 50 packets per second were sent to the Sun

and the same number were sent back to the VAX (presumably acknowledgments). The

exact same number was generated running multiple programs in different windows.

This indicates that the local X server on the Sun was the limiting factor and that this

should be typical of the maximum traffic one workstation might generate using X

remotely. In actual practice, remote applications should be designed to exchange far

fewer packets.

In addition to this testing, we built a number of applications under X. We created a

package of small files that would allow a naive user of X to try it. This package, called

MyX, creates an environment similar to Suntools (the Sun window package) as far as

mouse interaction and window management is concerned. MyX provides users a way to

try the X environment without having to wade through a large amount of

documentation. We distributed MyX to a number of people throughout the Internet.

We developed an X-based graphics interface for GNU Emacs.* Our graphics extension

allows LISP functions within this editor to create simple line-drawing graphics in an X

window on the user's workstation.

We also created a larger application under X: a system for interactively viewing

Mandlebrot set fractals. It allows the user to "zoom in" on a smaller region of the

display. The Mandlebrot set data is calculated as it is displayed. This program runs on

a remote VAX and is written in C using the Xlib interface to X. 1 8 If X had been

At the time of this development, GNU Emacs was one of the few editors that were able to use the X
protocol.
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available on a supercomputer, it would have been interesting to run this program on

one, as examining small areas of the Mandlebrot set can take quite a large amount of

computation.

This application is a example of something near the all-remote edge of the

supercomputer/workstation interaction spectrum. We would have liked to test a

version closer to the other end of that spectrum, but we did not have the time to do so.

Such a program might have the remote computer generate a large amount of data into

a file; then a local display program would access parts of that file depending on the

view the user selected.

Most of the experimental programs we developed under X were done without the use

of a toolkit. However, we did write some small programs with DEC's Xt toolkit.19 In

Version 10 of X, a toolkit was a convenience but was not necessary; however, in version

11, use of some kind of toolkit is almost essential. Selection of a toolkit and a window

manager (a special client program, run locally, which allows resizing and movement of

windows) is a major decision a program developer must make; it will have great

influence on the application's development.

We found that using a toolkit allows programming at a somewhat higher level and

that programs can generally be made much shorter (as demonstrated by Rosenthal 20 ).

However, the existing toolkits still require programming at a relatively low level and

seem more directed at systems programmers then at general application developers.

There is a need for a somewhat higher level toolkit on top of the existing ones. (Note:

as things are changing very rapidly, this level of toolkit may already be available.

CMU's Andrew toolkit, which we did not have a chance to evaluate due to time

constraints, appears to be the type of toolkit we describe.)

4.3.4 A new kind of remote split editor running within GNU Emacs

After considering the various types of applications on the supercomputer/workstation

interaction spectrum of Figure 2, we felt 't would be useful to prototype an application

that ':lls nearer to the middle. We chose the problem of editing remote files as an

example.
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One usual way to edit a remote file is to FTP the file to the local workstation, edit it,

and then FTP it back to the remote site. Another is to run an editor remotely on top

of an interactive network connection (e.g., Telnet). Now, a user can take advantage of

X or NeWS to run the editor remotely and display on the local workstation.

Both of the above approaches have potential problems. Editing a program, running it

remotely, changing it, and then running it again involves transferring the entire file

back and forth across the network, wasting network bandwidth. On the other hand,

round-trip network delay time can make interactive remote editing very difficult.

One solution to these problems is a split editor, which divides the editing

computation between the local and remote machines. (An example of this is the SED

editor, developed for MFEnet users. 21  Another example, closer in design to our

prototype, is described by Comer, et al. 22 ) Typically, a split editor works by sending

one section of the file at a time to the remote machine. As the file is modified, the new

versions of these sections are sent back to the remote machine. The user may run into

trouble, however, when moving to a part of the file that has not yet been loaded into

the local machine. When this happens, the user suddenly must wait until that section is

transferred, which can be very frustrating when response has previously been very fast.

In our prototype editor, we assumed that, primarily, the user would be continually

making changes to an existing remote file. If the user is creating a large file from

scratch, he or she would be more likely to use a standard editor to create the file locally

and then transfer the entire file to the remote machine. In our editor, we transfer the

entire remote file to the local machine only once at the beginning of the editing session.

From then on, we send only the changes that are made to it. The remote side of the

editor makes these changes as it receives them and then acknowledges that it has done

so to the local editing process. (A similar approach is also taken in a system at Purdue

University.22 )

GNU Emacs4 is an extensible editor that runs its own LISP interpreter. Editing

functions are programmed in LISP and can be bound to any key. Instead of writing an



19

editor entirely from scratch, we decided to build the split editor on top of GNU Emacs.

The entire system is written in GNU Emacs LISP and requires no modification of the

compiled C code that underlies the LISP. Use of the split editor appears virtually

identical to the standard way in which Emacs is used.

When the user selects a remote file to edit, the entire file is transferred to the local

machine and the remote side of the editor is started. Nothing is transferred to the

remote side until the user makes an actual modification to the file. Then this change is

sent to the remote process, which acknowledges it. The remote version of the file is

saved periodically in case either machine goes down.

Changes to the file are simply GNU Emacs LISP instructions. If these instructions

were saved in a file, and that LISP file were loaded into Emacs, the resulting

instructions would convert the old version of the edited file to the new version. Thus, it

is also possible to keep a running log of changes and to execute them all at once instead

of incrementally.

Our split editor worked well. However, as was the case with the remote window

protocols, a remote execution procedure was again necessary. For this split editor, we

used the rsh facility of UNIX. Thus, the system as currently implemented requires both

the local and remote sites to run UNIX and to have rsh access. Again, this points out

the need for a general remote execution protocol not tied to any particular operating

system.

As mentioned in Section 4.3.1, when one has an application in the middle of the

interaction spectrum one generally must define a protocol for how the remote and local

sides will communicate. In the case of our split editor, our protocol is just LISP

instructions. This was done for ease of debugging and for readability of the changes,

and because it allows for a very simple remote side. The remote process is simply

another GNU Emacs process that reads in LISP instructions and executes them.

In addition to its basic editing functions, the split editor allows the user to view
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remote files without modifying them and to manipulate remote directories in a way

similar to Emacs' Dired mode.4

4.4 Future User Requirements of the Scientific Community

In order to maximize the usefulness of supercomputers to the scientific community, it

is important to determine the ways in which this community expects to use them. We

therefore investigated how researchers currently use supercomputers, how they expect to

interact with them in the future, and what protocols and capabilities will be necessary

to support this.

We participated in the DARPA Internet Task Force on Scientific Requirements to

explore these issues and to make known our results. In addition to releasing a variety

of position papers on future scientific requirements for networking, the task force

contributed to the 1987 FCCSET report to Congress. 23

We interviewed several scientists who use supercomputers in order to learn what

facilities currently exist and what new ones are desired. We also participated in

supercomputer workshops held at NSF-sponsored supercomputer centers.

Because of the importance of mathematical equations in today's scientific

communications and the lack of any standard for representing equations on a computer,

we also studied the issues involved in defining an equations representation standard.

Some user-interface considerations were also studied. The results were reported by

Katz2 4 and in a soon-to-be-released position paper by the Internet Task Force on

Scientific Requirements. 25 We also participated in discussions and meetings with other

groups interested in this subject, including those funded under the NSF EXPRES

project (some of which was reported by Arnon 26 ).

We believe there is a need for a standard that will allow for the interchange of

equations between electronic mail messages, various document preparation systems, and

symbolic mathematics systems. We have identified four levels of abstraction at which

mathematical expressions may be represented. At the present time, there is general
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disagreement about which level or levels would be most appropriate for a standard. It

is probable that more than one of these levels will be required. However, we believe the

development of such a standard will be critical for effective computer-based

communication in the sciences.

5 IMPACT

As a result of the NSF Supercomputer Initiative and the DARPA Strategic Computing

Initiative, and because of continued increases in network and computer capability, the

bulk of the scientific community will soon be using computers interconnected via the

Internet in order to do their work. Many will use remote supercomputers; others will

use these resources mainly to communicate electronically with their colleagues. As a

result of our work, we hope they will be able to work in this new environment more

effectively.

Our testing of new and existing protocols will help to detcrmine which protocols

should be used in the supercomputer/workstation environment. The development of a

system similar to our proposed Intelligent Communication Facility will allow users to

run existing programs on different machines without having to rewrite them or to

become knowledgeable about low-level network protocols.

The current trend away from the use of large, timeshared mainframes and toward the

use of powerful workstations connected to high-speed networks indicates that more and

more researchers will use the new remote window protocols such as X and NeWS. Our

studies in this area have given examples of how to best use these protocols and have

identified several major issues that must be resolved in order for them to work.

The spectrum of supercomputer/workstation interaction provides a method for

classifying different modes of using remote computing resources.

It is hoped that our work on an equations representation standard will influence the

much-needed work in this area. Such a standard will be important to scientists wishing

to collaborate electronically. Through our participation in various workshops and in
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the Internet Task Force on Scientific Requirements, we have worked toward the

development of such collaborative scientific work.

6 FUTURE WORK

Although the Supercomputer Workstation Communication project is at an end, there

is ample opportunity for follow-on work. Continuing research is needed in the following

areas:

1. A general Internet remote execution protocol must be developed. This
protocol should allow for user authentication and for security. Such a
protocol is needed for the remote window protocols to be used effectively, as
well as for applications such as our split editor and the Intelligent
Communication Facility.

2. An Internet-based batch protocol is also needed. The National Center for
Atmospheric Research (NCAR) has developed a such a system on top of
existing protocols, 17 but this system requires the user to register a password
for his local machine with the batch processor. A separate protocol is really
needed, perhaps as a part of a general remote execution protocol.

3. Much more work should be done to test and tune both X and NeWS on
supercomputers over high-capacity networks. At the time of our study,
neither X nor NeWS was available on any of the NSF-sponsored
supercomputers, but they should become available in the near future. It is
unknown how much the widespread use of these protocols will load the
supercomputers and the networks.

4. A standard must be defined to allow for the interchange of equations among
electronic mail messages, various document preparation systems, and
symbolic mathematics systems. As more and more scientists become
connected to the Internet, they will demand the ability to send mathematical
expressions via electronic mail.2 4' 25 It would be useful to prototype the
Intelligent Communication Facility described in Section 4.2. Having such a
system in addition to X or NeWS would allow more effective use of both
remote and local resources.
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